Quad D Flip-Flop with Common Clock and Reset High-Speed Silicon-Gate CMOS

The IN74AC175 is identical in pinout to the LS/ALS175, HC/HCT175. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALS outputs.

This device consists of four D flip-flops with common Reset and Clock inputs, and separate D inputs. Reset (active-low) is asynchronous and occurs when a low level is applied to the Reset input. Information at a D input is transferred to the corresponding Q output on the next positive-going edge of the Clock input.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A} ; 0.1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- High Noise Immunity Characteristic of CMOS Devices
- Outputs Source/Sink 24 mA

LOGIC DIAGRAM

PIN $16=$ VCC $_{\text {CC }}$
PIN $8=$ GND

ORDERING INFORMATION IN74AC175N Plastic IN74AC175D SOIC
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$ for all packages

PIN ASSIGNMENT

RESET 1 -	16	V_{CC}
Q0 C_{2}	15	Q3
$\overline{\text { Q0 }} 3$	14	$\overline{\text { Q }}$
D0 4	13	D3
D1 5	12	D2
Q1 6	11	$\overline{\mathrm{Q}} 2$
Q1 7	10	Q2
GND [8	9	CLOCK

FUNCTION TABLE

Inputs			Outputs	
Reset	Clock	D	Q	$\overline{\mathrm{Q}}$
L	X	X	L	H
H	-	H	H	L
H	-	L	L	H
H	L	X	no change	

[^0]
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
Vin	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
Vout	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
IIN	DC Input Current, per Pin	± 20	mA
Iout	DC Output Sink/Source Current, per Pin	± 50	mA
Icc	DC Supply Current, VCc and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package +	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
+Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
Vcc	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
Vin, Vout	DC Input Voltage, Output Voltage (Referenced to GND)	0	Vcc	V
TJ	Junction Temperature (PDIP)		140	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
Іон	Output Current - High		-24	mA
IoL	Output Current - Low		24	mA
$\mathrm{tr}_{\mathrm{t}}^{\mathrm{tf}}$	Input Rise and Fall Time * $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ (except Schmitt Inputs) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	0 0 0	$\begin{gathered} \hline 150 \\ 40 \\ 25 \\ \hline \end{gathered}$	ns / V

${ }^{*} V_{\text {IN }}$ from 30% to $70 \% V_{\text {cc }}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND \leq ($\mathrm{V}_{\text {IN }}$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {cc }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or Vcc). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
VIH	Minimum HighLevel Input Voltage	Vout $=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.1 \mathrm{~V}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
VIL	Maximum Low Level Input Voltage	Vout $=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.1 \mathrm{~V}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V
Voн	Minimum HighLevel Output Voltage	Iout $\leq-50 \mu \mathrm{~A}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IoH}=-12 \mathrm{~mA} \\ & \mathrm{Ioh}=-24 \mathrm{~mA} \\ & \mathrm{Ioh}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	
Vol	Maximum LowLevel Output Voltage	Iout $\leq 50 \mu \mathrm{~A}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	V
		$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IoL}=12 \mathrm{~mA} \\ & \mathrm{IoL}=24 \mathrm{~mA} \\ & \mathrm{Iol}=24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	
In	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	$\mu \mathrm{A}$
IoLD	+Minimum Dynamic Output Current	Vold $=1.65 \mathrm{~V}$ Max	5.5		75	mA
Iohd	+ Minimum Dynamic Output Current	Vонд $=3.85 \mathrm{~V}$ Min	5.5		-75	mA
Icc	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	8.0	80	$\mu \mathrm{A}$

* All outputs loaded; thresholds on input associated with output under test.
+Maximum test duration 2.0 ms , one output loaded at a time.
Note: In and Icc @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V Vcc

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \hline \mathrm{VCC}^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits				Unit
			$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		
			Min	Max	Min	Max	
fmax	Maximum Clock Frequency (Figure 1)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 149 \\ & 187 \end{aligned}$		$\begin{aligned} & 139 \\ & 187 \end{aligned}$		MHz
tply	Propagation Delay, Clock to Q or $\overline{\mathrm{Q}}$ (Figure 1)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.5 \end{gathered}$	ns
tphL	Propagation Delay, Clock to Q or $\overline{\mathrm{Q}}$ (Figure 1)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns
tple	Propagation Delay, Reset to $\overline{\mathrm{Q}}$ (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
tphL	Propagation Delay, Reset to Q (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	ns
Cin	Maximum Input Capacitance	5.0	4.5		4.5		pF

		Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	45	pF

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

TIMING REQUIREMENTS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\mathrm{tr}_{\mathrm{r}}=\mathrm{tr}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \mathrm{VCC}^{*} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
			$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{tsu}_{\text {s }}$	Minimum Setup Time, Data to Clock (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	ns
th	Minimum Hold Time, Clock to Data (Figure 3)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
${ }_{\text {tw }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	ns
$\mathrm{tw}_{\text {w }}$	Minimum Pulse Width, Clock (Figure 1)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	ns
trec	Minimum Recovery Time, Reset to Clock (Figure 2)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	ns

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

INTEGRAL

Figure 3. Switching Waveforms

EXPANDED LOGIC DIAGRAM

[^0]: X = Don't care

