
Десятичный счетчик делитель

Микросхема IW4017В представляет собой 5-ступенчатый счетчик Джонсона с 10 разрядами выходного кода. Микросхема имеет входы тактовых импульсов (CLOCK), разрешения счета (CLOCK INHIBIT), сброса (RESET). Наличие триггера Шмита во входной цепи CLOCK делает возможным не ограничивать время фронта и среза входного импульса.

Счет происходит при переходе CLOCK в высокий уровень и низком уровен на входе CLOCK INHIBIT. Счет запрещен, когда на входе CLOCK INHIBIT высокий уровень. Высокий уровень RESET обнуляет счетчик. Применение схемы Джозефсона позволяет проводить высокоскоростной счет с использованием 2 входов без выбросов на выходах. Наличие антидребезговой логики обеспечивает точность счета. Выходы нормально в низком уровне и переходят в высокий при поступлении соответствующего счетного импульса и остаются в этом состоянии на весь цикл счета. Один цикл выходного сигнала CARRY OUT формируется через каждые 10 входных циклов.

- Диапазон напряжения питания от 3 до 18 В
- Максимальный входной ток 1 мкА при напряжении питания 18В в диапазоне температур; 100 нА при напряжении питания 18В для 25°С
- Помехозащищенность (в диапазоне рабочих температур):

$$1.0~{\rm B}$$
 при ${\rm V_{CC}}{=}5.0~{\rm B}$ $2.0~{\rm B}$ при ${\rm V_{CC}}{=}10.0~{\rm B}$ $2.5~{\rm B}$ при ${\rm V_{CC}}{=}15.0~{\rm B}$

IW4017B

НАЗНАЧЕНИЕ ВЫВОДОВ

Q5 [1 ●	16	v_{CC}
Q1 [2	15	RESET
Q0 [3	14	CLOCK
Q2 [4	13	CLOCK INHIBIT
Q6 [5	12	CARRY OUT
Q7 [6	11	Q9
Q3 [7	10	Q4
GND [8	9	Q8

ТАБЛИЦА ИСТИННОСТИ

Clock	Clock	Reset	Состояние на
	Inhibit		выходах
L	X	L	не меняется
X	Н	L	не меняется
X	X	Н	сброс Q0=H, Q1-
			Q9=L, C0=H
	L	L	N=N+1
	X	L	не меняется
X		L	не меняется
Н	_	L	N=N+1
			0.4.77

Выход=H для Q0,Q1,Q2,Q3 или Q4=H иначе выход = L, X=любое состояние

ПРЕДЕЛЬНЫЕ РЕЖИМЫ*

Обозначение параметра	Наименование параметра	Норма, не более	Единица измерения
V_{CC}	Напряжение питания (относительно GND)	-0.5 ÷ 20	В
$ m V_{IN}$	Входное напряжение (относительно GND)	$-0.5 \div V_{CC} \ 0.5$	В
$V_{ m OUT}$	Выходное напряжение (относительно GND)	$-0.5 \div V_{CC} \ 0.5$	В
I_{IN}	Входной ток по выводу	±10	мА
P _D	Мощность рассеивания при свободном обмене воздуха, Пластмассовый DIP^{**} SOIC^{**}	750 500	мВт
P_{D}	Мощность рассеивания выходным транзистором	100	мВт
Tstg	Температура хранения	-65 ÷ 150	°C
T_{L}	Допустимая температура вывода на расстоянии 1 мм от корпуса в течении 10 с	260	°C

^{*} Превышение предельных режимов может привести к катастрофическому отказу микросхемы. Рабочие режимы должны соответствовать предельно допустимым режимам, приведенным ниже.

ПРЕДЕЛЬНО ДОПУСТИМЫЕ РЕЖИМЫ

Обозначение	Наименование параметра	Норма		Единица
параметра		Не менее	Не более	измерения
V_{CC}	Напряжение питания (относительно GND)	3.0	18	В
$V_{\text{IN}}, V_{\text{OUT}}$	Входное напряжение, выходное напряжение (относительно GND)	0	V_{CC}	В
T_{A}	Температура хранения для всех видов корпусов	-55	125	°C

Микросхема содержит схемное решение по ее защите от статического электричества и электронных полей. В связи с этим она должна использоваться в тех схемах применения, в которых нет больших входных воздействий по напряжению. Для правильного использования напряжения V_{IN} и V_{OUT} должны быть в диапазоне $\text{GND} \leq (V_{\text{IN}}$ или $V_{\text{OUT}}) \leq V_{\text{CC}}$.

Неиспользуемые входы должны всегда привязываться к соответствующему логическому уровню напряжения (например, GND или V_{CC}). Неиспользуемые выходы должны быть оставлены незадействованными

^{**} При эксплуатации в диапазоне температур $65^{\circ} \div 125^{\circ}$ С значение мощности рассеивания снижается для пластмассового DIP корпуса на 10 мВт/ $^{\circ}$ С, для SOIC - на 7 мВт/ $^{\circ}$ С

СТАТИЧЕСКИЕ ПАРАМЕТРЫ (Напряжение относительно GND)

	Наименование		V_{CC}	Норма			Един
Обознач	параметра	Режим измерения	В	≥-55°C	25°C	≤125 °C	изм.
$ m V_{IH}$	Минимальное входное напряжение высокого уровня	V _{OUT} =0.5 В или V _{CC} - 0.5 В V _{OUT} =1.0 В или V _{CC} - 1.0 В V _{OUT} =1.5 В или V _{CC} - 1.5 В	5.0 10 15	3.5 7 11	3.5 7 11	3.5 7 11	В
$ m V_{IL}$	Максимальное входное напряжение низкого уровня	V_{OUT} =0.5 В или V_{CC} - 0.5 В V_{OUT} =1.0 В или V_{CC} - 1.0 В V_{OUT} =1.5 В или V_{CC} - 1.5 В	5.0 10 15	1.5 3 4	1.5 3 4	1.5 3 4	В
$V_{ m OH}$	Минимальное выходное напряжение высокого уровня	V _{IN} =GND или V _{CC} V _{IL} =1.5B, V _{IH} =3.5B, I _O =-1мкА V _{IL} =3.0B, V _{IH} =7.0B, I _O =-1мкА V _{IL} =4.0B, V _{IH} =11B, I _O =-1мкА	5.0 10 15 5.0 10 15	4.95 9.95 14.95 4.5 9.0 13.5	4.95 9.95 14.95 4.5 9.0 13.5	4.95 9.95 14.95 4.5 9.0 13.5	В
$ m V_{OL}$	Максимальное выходное напряжение низкого уровня	V _{IN} =GND или V _{CC} V _{IL} =1.5B, V _{IH} =3.5B, I _O = 1мкА V _{IL} =3.0B, V _{IH} =7.0B, I _O = 1мкА V _{IL} =4.0B, V _{IH} =11B, I _O = 1мкА	5.0 10 15 5.0 10	0.05 0.05 0.05 0.5 1.0 1.5	0.05 0.05 0.05 0.5 1.0 1.5	0.05 0.05 0.05 0.5 1.0 1.5	В
I_{IN}	Максимальный входной ток высокого/низкого уровня	$ m V_{IN} = GND$ или $ m V_{CC}$	18	±0.1	±0.1	±1.0	мкА
I_{CC}	Максимальный ток потребления	V _{IN} = GND или V _{CC}	5.0 10 15 20	1 2 4 20	1 2 4 20	30 60 120 600	мкА
I_{OL}	Минимальный выходной ток низкого уровня	$V_{\rm IN}$ = GND или $V_{\rm CC}$ $V_{\rm OL}$ =0.4 B $V_{\rm OL}$ =0.5 B $V_{\rm OL}$ =1.5 B	5.0 10 15	0.64 1.6 4.2	0.51 1.3 3.4	0.36 0.9 2.4	мА
${ m I}_{ m OH}$	Минимальный выходной ток высокого уровня	V_{IN} = GND или V_{CC} V_{OH} =4.6 B V_{OH} =2.5 B V_{OH} =9.5 B V_{OH} =13.5 B	5.0 5.0 10 15	-0.64 -2.0 -1.6 -4.2	-0.51 -1.6 -1.3 -3.4	-0.36 -1.15 -0.9 -2.4	мА

ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ($C_L = 50 \pi \Phi$, $R_L = 200 \kappa O_M$, $t_r = t_f = 20 \text{ нc}$)

Обознач.	Наименование параметра		V _{CC} Норма			Един.
параметра		V	≥-55°C	25°C	≤12 5°C	измерен.
f_{max}	Максимальная частота следования импульсов тактовых сигналов (Рисунок 1)	5.0 10 15	2.5 5 5.5	2.5 5 5.5	1.25 2.5 2.75	МГц
$t_{\rm PLH},t_{\rm PHL}$	Максимальное время задержки распространения при включении/выключении от входа СLK к выходу Q (Q) (Рисунок 1)	5.0 10 15	650 270 170	650 270 170	1300 540 340	нс
$t_{\rm PLH},t_{\rm PHL}$	Максимальное время задержки распространения при включении/выключении от входа CLK к выходу Q (Q) (Рисунок 1)	5.0 10 15	600 250 160	600 250 160	1200 500 320	нс
t_{TLH}, t_{THL}	Максимальная частота следования импульсов тактовых сигналов (Рисунок 1)	5.0 10 15	200 100 80	200 100 80	400 200 160	нс
$t_{\rm PLH},t_{\rm PHL}$	Максимальное время задержки распространения при включении/выключении от входа СLK к выходу Q (Q) (Рисунок 1)	5.0 10 15	530 230 170	530 230 170	1060 460 340	нс
C _{IN}	Максимальная входная емкость	-		5		пФ

ВРЕМЕННЫЕ ПАРАМЕТРЫ (V_{CC} =5.0B±10%, C_L =50 Π Φ, t_r = t_r =20 нс, R_L =200 κ Oм)

Обознач.	Обознач. Наименование параметра			Норма		Един.
параметра		В	≥-55°C	25°C	≤12 5°C	измерен.
$t_{\rm w}$	Минимальная длительность тактового импульса (Рисунок 1)	5.0 10 15	200 90 60	200 90 60	400 180 120	нс
$t_{r,} t_{f}$	Максимальное время нарастания (спада) тактового импульса (Рисунок 1)	5.0 10 15	НЕОГРАНИЧЕНО		МКС	
$t_{ m w}$	Минимальная длительность установки или сброса (Рисунок 1)	5.0 10 15	260 110 60	260 110 60	520 220 120	нс
t _{rem}	Минимальная длительность установки или сброса (Рисунок 1)	5.0 10 15	400 280 150	400 280 150	800 560 300	нс
$t_{ m SU}$	Минимальное время установкивходного сигнала (Рисунок 1)	5.0 10 15	230 100 70	230 100 70	460 200 140	нс

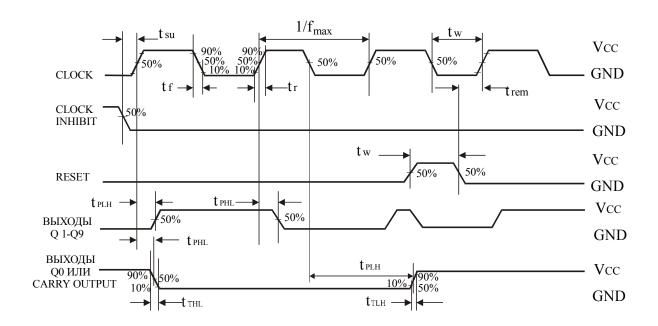
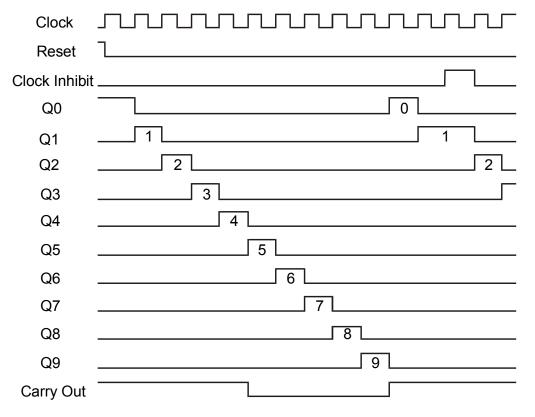
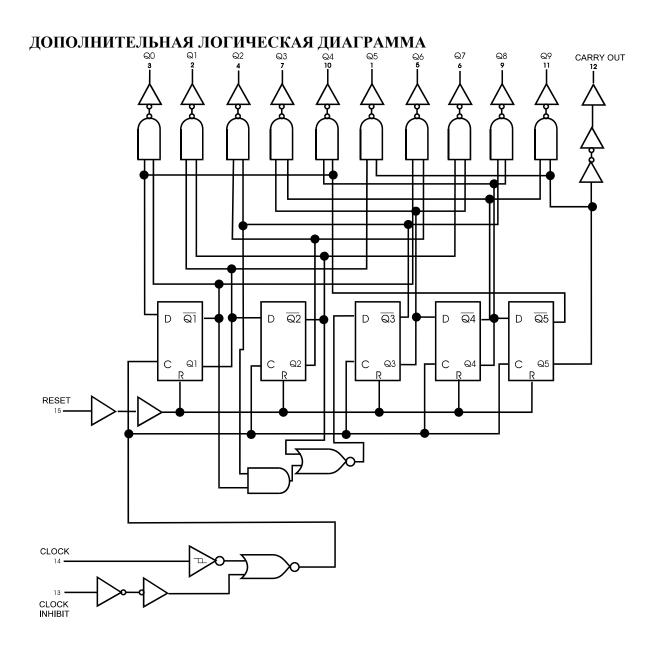
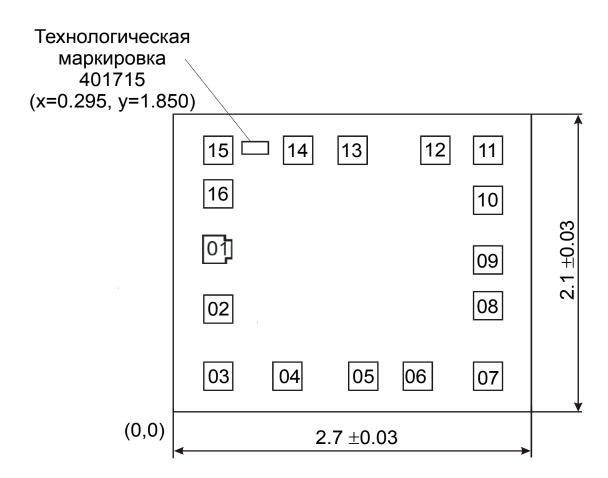




Рисунок 1. Временная диаграмма


Временная диаграмма

ПЛАН КРИСТАЛЛА ІZ4017В

Размер контактных площадок 0.120×0.120 мм (Размер указан по слою "металлизация") Толщина кристалла 0.46 ± 0.02 мм

РАСПОЛОЖЕНИЕ КОНТАКТНЫХ ПЛОЩАДОК

Номер контактной	Обозначение	Координаты				
площадки		(левый нижний угол), мм				
		X	Y			
01	Q5	0.108	1.2555			
02	Q1	0.108	0.7885			
03	Q0	0.108	0.108			
04	Q2	0.659	0.108			
05	Q6	1.218	0.108			
06	Q7	1.777	0.108			
07	Q3	2.4285	0.108			
08	GND	2.4285	0.625			
09	Q8	2.4285	0.821			
10	Q4	2.4285	1.327			
11	Q9	2.4285	1.8465			
12	CARRY OUT	2.1925	1.8465			
13	CLOCK INHIBIT	1.138	1.8465			
14	CLOCK	0.748	1.8465			
15	RST	0.108	1.8465			
16	Vec	0.108	1.4515			

